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Who Am I

• Ph.D. in Experimental Condensed Matter Physics (JHU)

• 8 years in a de facto Research Software Engineering role at 

NSLS-II

• Started the Bluesky project, a green-field (blue sky...) open-

source Python approach to data acquisition and data access 

experimental science, with collaborators Thomas Caswell and 

Ken Lauer

• Bluesky has grown within NSLS-II and around the world
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What do we mean "open source "?

1. Publicly visible source code

2. Licensed for reuse with an OSI-approved license

3. Accepting contributions

4. Open development

5. Open decision making

6. Multi-institution engagement

7. Retirement
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from Matt Rocklin's post

https://www.coiled.io/blog/

stages-of-openness
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Some Technical Goals of Bluesky

• Be generic across science domains.

• Be unopinionated data formats; focus on data structures.

• Handle asynchronous data streams.

• Support multi-modal: simultaneous, cross-instrument, 

cross-facility experiments.

• Support streaming.
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Some Sociological Goals of Bluesky

• Overcome "not-invented-here"-ism.

• Make co-developed but separately useful components with well-

defined boundaries which can be adopted piecemeal by other 

groups and facilities.

• Enable code to be reused in ways unforeseen by the original 

authors.
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Work openly from the start

• Discover potential collaborators early, before it is costly to 

consolidate.

• Different perspectives can identify where code may need to be 

flexible to support future use cases.

• Having more than one person understanding every part of the 

code prevents systematic risks for the project and keeps you from 

being tied to that code.
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Automated tests are essential

• They enable people to try new ideas with confidence.

• Ensure that we don't accidentally break our ability to 
recreate important results.

• Ensure that my "improvement" won't accidentally break 
your research code by protecting it with tests that verify key 
results.

• Continuous Integration services ensure the tests always 
get run on every proposed change.
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Good, current documentation can convince 
people it is easier to learn to use your 
project than write their own
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Minimum Viable Governance

• Maintainers: per repo, make day-to-day decisions and 

set processes as appropriate to the repo

• Technical Steering Committee: arbitrate when maintainers 

cannot reach rough consensus

• Project Advisory Board: management-level stakeholders, oversee 

big-picture priorities
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Scientific Python is a layered ecosystem
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Aim for layered, extensible code
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Aim for layered, extensible code
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Share the toolbox
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Embrace Protocols

• Protocols enable interoperable tools without explicit coordination

• This has been the key to the success of Scientific Python

• And mini-ecosystems around it, like Bluesky
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Example: Python iteration protocol

for i in range(10):

  ...
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Example: Python iteration protocol

class Thing:

  def __iter__(self):

    ...

for x in Thing():

  ...
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Example: numpy __array__ protocol

import pandas

import numpy

df = pandas.DataFrame({'intensity': [1,1,2,3]})

numpy.sum(df)  # How does this work?
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Example: scikit-learn Pipelines

• Estimators implement estimator.fit(data, [targets])

• Predictor implement predictor.predict(data)

• Transformers implement transformer.transform(data)

• Models implement model.score(data)
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Example: Protocols in Bluesky

• Device protocol

• Msg protocol

• Document model

• Tiled HTTP API
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Duck Typing is a Good Idea

• "If it quacks like a duck..."

• Avoid if type(x) == ... unless you 

really, really mean it.

• When using isinstance(x, ...) use the 

broadest acceptable definition

• isinstance(x, list)

• isinstnace(x, collections,abc.Iterable)
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Don't be afraid to refactor or rewrite

• No code is ever right the first (or second) time.

• Refactoring the code once you understand the problem and the 

design trade-offs more fully helps keep the code maintainable. 

• Version control, tests, and linting are your safety net, empowering 

you to make changes with confidence.

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023



24

Permissiveness isn't always convenient

• It can be tempting to guess what the user means.

• This can result is deeply confusing bugs.

• Compromise:

• Write the actual logic in strict code.

• Write a thin friendly wrapper around it.

• This enables writing multiple friendly wrappers with different opinions or 

defaults, targeting different types of users or use cases.
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Write helpful error messages

• Be specific.

• Include what the wrong value was, 

what was wrong with it, and 

perhaps how it might be fixed.

• For example, if the code fails to 

locate a file it needs, it should say 

what it was looking for and where it 

looked.
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Keep I/O separate

• I/O functions should only do I/O

• Example: consume file path, return array and dictionary of 

metadata

• To support a new file format, it should not be necessary to touch 

the scientific logic

• The science code should operate on arrays and other data 

structures, never touch files directly
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Avoid Changing State

# Bad!

data = Data()

data.load_data()

data.prepare()

data.do_calculations()

data.plot()
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Avoid Changing State

# Good!

empty_data = EmptyData()

loaded_data = empty_data.load_data()

prepared_data = loaded_data.prepare()

computed_data = prepared_data.do_calculations()

computed_data.plot()
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Avoid Changing State

# You can chain these for more succinct usage.

computed_data =

EmptyData().load_data().prepare().do_calculations()

computed_data.plot()
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Consider: Can this just be a function?

• Object Oriented design has its place, but frequently does not add 

value in scientific code.

• Usually built-in or common types like list, dict, dataclass, 

or numpy array do the job and are easier to quickly understand.

• "It is better to have 100 functions operate on one data structure 

than 10 functions on 10 data structures." – From ACM’s SIGPLAN publication, 

(September, 1982), Article “Epigrams in Programming”, by Alan J. Perlis of Yale University.
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Optimize for readability

• Writing new code is easy. Maintaining code is hard.

• Code is read more times than it is written.

• Do not be too clever, or you may not be able to untie 

your own knots.

• Optimize for clarity over brevity.

• Use consistent and descriptive variable names.
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https://learn.scientific-python.org/development/
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