
Designing Open Source
Code Ecosystems

RSoXS Code Camp, NIST, August 2023

Daniel Allan

Data Engineering Group Lead

Data Science and Systems Integration Program, NSLS-II

2

Who Am I

• Ph.D. in Experimental Condensed Matter Physics (JHU)

• 8 years in a de facto Research Software Engineering role at

NSLS-II

• Started the Bluesky project, a green-field (blue sky...) open-

source Python approach to data acquisition and data access

experimental science, with collaborators Thomas Caswell and

Ken Lauer

• Bluesky has grown within NSLS-II and around the world

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

3Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

4Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

5

What do we mean "open source "?

1. Publicly visible source code

2. Licensed for reuse with an OSI-approved license

3. Accepting contributions

4. Open development

5. Open decision making

6. Multi-institution engagement

7. Retirement

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

from Matt Rocklin's post

https://www.coiled.io/blog/

stages-of-openness

6

Some Technical Goals of Bluesky

• Be generic across science domains.

• Be unopinionated data formats; focus on data structures.

• Handle asynchronous data streams.

• Support multi-modal: simultaneous, cross-instrument,

cross-facility experiments.

• Support streaming.

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

7

Some Sociological Goals of Bluesky

• Overcome "not-invented-here"-ism.

• Make co-developed but separately useful components with well-

defined boundaries which can be adopted piecemeal by other

groups and facilities.

• Enable code to be reused in ways unforeseen by the original

authors.

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

8

Work openly from the start

• Discover potential collaborators early, before it is costly to

consolidate.

• Different perspectives can identify where code may need to be

flexible to support future use cases.

• Having more than one person understanding every part of the

code prevents systematic risks for the project and keeps you from

being tied to that code.

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

9

Automated tests are essential

• They enable people to try new ideas with confidence.

• Ensure that we don't accidentally break our ability to
recreate important results.

• Ensure that my "improvement" won't accidentally break
your research code by protecting it with tests that verify key
results.

• Continuous Integration services ensure the tests always
get run on every proposed change.

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

10

Good, current documentation can convince
people it is easier to learn to use your
project than write their own

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

"Diátaxis" https://diataxis.fr

11

Minimum Viable Governance

• Maintainers: per repo, make day-to-day decisions and

set processes as appropriate to the repo

• Technical Steering Committee: arbitrate when maintainers

cannot reach rough consensus

• Project Advisory Board: management-level stakeholders, oversee

big-picture priorities

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

12

Scientific Python is a layered ecosystem

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

13

Aim for layered, extensible code

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

14

Aim for layered, extensible code

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

15

Share the toolbox

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

16

Embrace Protocols

• Protocols enable interoperable tools without explicit coordination

• This has been the key to the success of Scientific Python

• And mini-ecosystems around it, like Bluesky

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

17

Example: Python iteration protocol

for i in range(10):

 ...

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

18

Example: Python iteration protocol

class Thing:

 def __iter__(self):

 ...

for x in Thing():

 ...

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

19

Example: numpy __array__ protocol

import pandas

import numpy

df = pandas.DataFrame({'intensity': [1,1,2,3]})

numpy.sum(df) # How does this work?

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

20

Example: scikit-learn Pipelines

• Estimators implement estimator.fit(data, [targets])

• Predictor implement predictor.predict(data)

• Transformers implement transformer.transform(data)

• Models implement model.score(data)

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

21

Example: Protocols in Bluesky

• Device protocol

• Msg protocol

• Document model

• Tiled HTTP API

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

22

Duck Typing is a Good Idea

• "If it quacks like a duck..."

• Avoid if type(x) == ... unless you

really, really mean it.

• When using isinstance(x, ...) use the

broadest acceptable definition

• isinstance(x, list)

• isinstnace(x, collections,abc.Iterable)

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

23

Don't be afraid to refactor or rewrite

• No code is ever right the first (or second) time.

• Refactoring the code once you understand the problem and the

design trade-offs more fully helps keep the code maintainable.

• Version control, tests, and linting are your safety net, empowering

you to make changes with confidence.

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

24

Permissiveness isn't always convenient

• It can be tempting to guess what the user means.

• This can result is deeply confusing bugs.

• Compromise:

• Write the actual logic in strict code.

• Write a thin friendly wrapper around it.

• This enables writing multiple friendly wrappers with different opinions or

defaults, targeting different types of users or use cases.

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

25

Write helpful error messages

• Be specific.

• Include what the wrong value was,

what was wrong with it, and

perhaps how it might be fixed.

• For example, if the code fails to

locate a file it needs, it should say

what it was looking for and where it

looked.

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

26

Keep I/O separate

• I/O functions should only do I/O

• Example: consume file path, return array and dictionary of

metadata

• To support a new file format, it should not be necessary to touch

the scientific logic

• The science code should operate on arrays and other data

structures, never touch files directly

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

27

Avoid Changing State

Bad!

data = Data()

data.load_data()

data.prepare()

data.do_calculations()

data.plot()

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

28

Avoid Changing State

Good!

empty_data = EmptyData()

loaded_data = empty_data.load_data()

prepared_data = loaded_data.prepare()

computed_data = prepared_data.do_calculations()

computed_data.plot()

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

29

Avoid Changing State

You can chain these for more succinct usage.

computed_data =

EmptyData().load_data().prepare().do_calculations()

computed_data.plot()

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

30

Consider: Can this just be a function?

• Object Oriented design has its place, but frequently does not add

value in scientific code.

• Usually built-in or common types like list, dict, dataclass,

or numpy array do the job and are easier to quickly understand.

• "It is better to have 100 functions operate on one data structure

than 10 functions on 10 data structures." – From ACM’s SIGPLAN publication,

(September, 1982), Article “Epigrams in Programming”, by Alan J. Perlis of Yale University.

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

31

Optimize for readability

• Writing new code is easy. Maintaining code is hard.

• Code is read more times than it is written.

• Do not be too clever, or you may not be able to untie

your own knots.

• Optimize for clarity over brevity.

• Use consistent and descriptive variable names.

Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

32Daniel Allan – Design Open Source Code Ecosystems – RSoXS Code Camp, NIST, August 2023

https://learn.scientific-python.org/development/

	Slide 1: Designing Open Source Code Ecosystems
	Slide 2: Who Am I
	Slide 3
	Slide 4
	Slide 5: What do we mean "open source "?
	Slide 6: Some Technical Goals of Bluesky
	Slide 7: Some Sociological Goals of Bluesky
	Slide 8: Work openly from the start
	Slide 9: Automated tests are essential
	Slide 10: Good, current documentation can convince people it is easier to learn to use your project than write their own
	Slide 11: Minimum Viable Governance
	Slide 12: Scientific Python is a layered ecosystem
	Slide 13: Aim for layered, extensible code
	Slide 14: Aim for layered, extensible code
	Slide 15: Share the toolbox
	Slide 16: Embrace Protocols
	Slide 17: Example: Python iteration protocol
	Slide 18: Example: Python iteration protocol
	Slide 19: Example: numpy __array__ protocol
	Slide 20: Example: scikit-learn Pipelines
	Slide 21: Example: Protocols in Bluesky
	Slide 22: Duck Typing is a Good Idea
	Slide 23: Don't be afraid to refactor or rewrite
	Slide 24: Permissiveness isn't always convenient
	Slide 25: Write helpful error messages
	Slide 26: Keep I/O separate
	Slide 27: Avoid Changing State
	Slide 28: Avoid Changing State
	Slide 29: Avoid Changing State
	Slide 30: Consider: Can this just be a function?
	Slide 31: Optimize for readability
	Slide 32

